Effect of the inositol polyphosphate InsP(6) on DNA-PK-dependent phosphorylation.
نویسنده
چکیده
Inositol hexakisphosphate (InsP(6)) is a member of the inositol polyphosphate group that participates in numerous intracellular signaling pathways. Cheung and colleagues previously reported that InsP(6) stimulated double-strand break repair by nonhomologous end joining (NHEJ) in cell-free extracts and that InsP(6) binding by the Ku70/80 subunit of the DNA-dependent protein kinase (DNA-PK) was required for stimulation of NHEJ in vitro. This report describes InsP(6)-dependent phosphorylation of two NHEJ factors, XRCC4 and XLF, in partially purified human cell extracts. XRCC4 and XLF are known substrates for DNA-PK, which does not require InsP(6) for protein kinase activity. Consistent with a role for DNA-PK in these reactions, InsP(6)-dependent phosphorylation of XRCC4 and XLF was DNA dependent and not observed in the presence of DNA-PK inhibitors. Depletion of the Ku70/80 DNA-, InsP(6)-binding subunit of DNA-PK resulted in loss of InsP(6)-dependent phosphorylation and showed a requirement for Ku70/80 in these reactions. Complementation of Ku70/80-depleted reactions with recombinant wild-type Ku70/80 restored InsP(6)-dependent phosphorylation of XRCC4 and XLF. In contrast, addition of a Ku70/80 mutant with reduced InsP(6) binding failed to restore InsP(6)-dependent phosphorylation. While additional protein kinases may participate in InsP(6)-dependent phosphorylation of XRCC4 and XLF, data presented here describe a clear requirement for DNA-PK in these phosphorylation events. Furthermore, these data suggest that binding of the inositol polyphosphate InsP(6) by Ku70/80 may modulate the substrate specificity of the phosphoinositide-3-kinase-related protein kinase DNA-PK.
منابع مشابه
DNA Damage and Cellular Stress Responses Effect of the Inositol Polyphosphate InsP6 on DNA-PK–Dependent Phosphorylation
Inositol hexakisphosphate (InsP6) is a member of the inositol polyphosphate group that participates in numerous intracellular signaling pathways. Cheung and colleagues previously reported that InsP6 stimulated double-strand break repair by nonhomologous end joining (NHEJ) in cell-free extracts and that InsP6 binding by the Ku70/80 subunit of the DNA-dependent protein kinase (DNA-PK) was require...
متن کاملSynthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases
Inositol (1,4,5) trisphosphate (Ins(1,4,5)P(3)) is a well-known messenger molecule that releases calcium from intracellular stores. Homologues with up to six phosphates have been characterized and recently, homologues with seven or eight phosphate groups, including pyrophosphates, have been identified. These homologues are diphosphoinositol pentakisphosphate (PP-InsP(5)/InsP(7)) and bis(diphosp...
متن کاملTargeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo.
Multiple inositol polyphosphate phosphatase (Minpp1) metabolizes inositol 1,3,4,5,6-pentakisphosphate (InsP(5)) and inositol hexakisphosphate (InsP(6)) with high affinity in vitro. However, Minpp1 is compartmentalized in the endoplasmic reticulum (ER) lumen, where access of enzyme to these predominantly cytosolic substrates in vivo has not previously been demonstrated. To gain insight into the ...
متن کاملDisruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5',5"'-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations.
Schizosaccharomyces pombe Aps1 is an enzyme that degrades both diadenosine oligophosphates (Ap(n)A, n =5 or 6) and diphosphoinositol polyphosphates [diphosphoinositol pentakisphosphate (PP-InsP(5)) and bisdiphosphoinositol tetrakisphosphate ([PP](2)-InsP(4))] in vitro. The in vivo substrates of Aps1 are unknown. We report here the identification of Ap(5)A, PP-InsP(5), [PP](2)-InsP(4) and a nove...
متن کاملMetabolic relations of inositol 3,4,5,6-tetrakisphosphate revealed by cell permeabilization. Identification of inositol 3,4,5, 6-tetrakisphosphate 1-kinase and inositol 3,4,5,6-tetrakisphosphate phosphatase activities in mesophyll cells.
Using a permeabilization strategy to introduce Ins(3,4,5,6) P(4) into mesophyll protoplasts of Commelina communis, we have identified Ins(3,4,5,6) P(4) 1-kinase activity in mesophyll cells. Multiple InsP(3) isomers were identified in Spirodela polyrhiza and Arabidopsis. Only two of these, Ins(1,2,3) P(3) and Ins(3,4,6) P(3), have previously been identified in plants and only in monocots. The is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 9 10 شماره
صفحات -
تاریخ انتشار 2011